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Abstract—Various exact solutions are found for axisymmetric small Rayleigh number (R) convection in
porous cavities due to a steady radial temperature gradient normal to the gravitational field. Detailed results
are presented for cylindrical and toroidal cavities with aspect ratio (4) arbitrary. The critical R for
applicability of the analysisis O(43?) at large 4, O(1)in 0.1 < 4 < 1,and at small 2is O(A ™! ?)for toroids and
O0(+"'?[—Ini]™") for cylinders. The exact solutions for toroids offer insight into the toroidal roll

characteristic of axisymmetric convection at small R.
For cylinders (and also for 2-dim. convection at small R in rectangles) a core flow with boundary layers

occurs both as 2 —» 0 and as 2 — . On the other hand, the flow pattern in toroids (and also in ellipses) is
invariant, free of cores and boundary layers.
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Close analogies between axisymmetric and 2-dim. convection at small R hold also for properties such as

the variation with A of the strength of convection and of the critical value of R.

NOMENCLATURE

radial cross-sectional area of axisymmetri-
cal porous cavity;

coefficients in equations (3.8) and (3.27);
length of horizontal (radial) axis of radial
cross-section of cavity;

coefficients in equation (3.8);

length of vertical axis of radial cross-section
of cavity ;

coefficients in equation (3.12);

constants defined by equation (3.6);
volumetric heat capacity of porous
medium;

parameter of secondary logarithmic oval;
function defined by equation (3.2);
gravitational acceleration;

total convective heat transport across the
horizontal mid-plane of the cavity;
function defined by equation (3.21);
modified Bessel function of the first kind of
order one;

integrals defined by equation (3.31);
Bessel functions of the first kind of orders
one and two;

nth positive zero of J, ;

total radial conductive heat transport
within cavity (for toroidal cavity, maximum
value of this quantity);

modified Bessel function of the second kind
of order one;

permeability of the porous medium;
characteristic macroscopic length of the
system

integer ;

of order x;

steady radial heat flux per unit axial length ;
Rayleigh number ;

maximum Rayleigh number for applica-
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bility of small R analysis;

dimensionless forms of r,, z,;

value of r at which ¥ = ¥, in cylindrical
cavities ;

cylindrical space co-ordinates for axisym-
metric systems, with z, vertical, positive
upwards;

reference radius;

internal radius of toroidal cavity;
dimensionless form of T, ;

temperature ;

characteristic macroscopic horizontal tem-
perature difference of the system;
dimensionless forms of u,, w,;
components of flow velocity in the r,, z
directions;

dummy variable in equation (3.31);
functions of r in equations (3.5} and (3.23);
functions of z in equations (3.5) and (3.23).

*

Greek symbols

v,

max?

coefficient of thermal volume expansion;
ratic of convective to conductive heat
transfer ;

boundary layer thickness;

temperature excess at radius r,, over that
at radius er, ;

thermal diffusivity of the porous medium;
aspect ratio, b/a; for rectangular and el-
liptical cavities, ratio of length of vertical
axis to that of horizontal axis (note that this
usage differs from that in ref. [1]);
kinematic viscosity of the fluid in the
porous medium;

for rectangular and elliptical cavities, maxi-
mum value of dimensionless stream
function ;
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‘P, Stokes stream function in dimensionless
form;
Y. maximum value of ¥,
Y. Stokes stream function.

1. INTRODUCTION

A previous paper [1] presented exact solutions for
small Rayleigh number free convection due to a
temperature gradient normal to the gravitational field
in 2-dim. porous cavities of various shapes. As well as
being relevant to small Rayleigh number flows occur-
ring in practice, these solutions represent natural
points of departure for analyses involving regular
expansion in the Rayleigh number.

The present paper develops the extension of ref. [1]
to the problems of axisymmetric small Rayleigh num-
ber free convection in porous cavities. The work is
devoted mainly to cylindrical and toroidal cavities,
both of arbitrary aspect ratio. As in the previous study,
we need only relatively simple mathematics to secure
the required exact solutions. Here also we refer
specifically to temperature-induced flows, but the
modification to solute-induced flows will be evident.

2. FLOW EQUATION FOR AXISYMMETRIC FREE
CONVECTION AT SMALL RAYLEIGH NUMBER
The equations governing axisymmetric steady con-
vection within a porous medium induced by a tem-
perature gradient may be written (e.g. [2])
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We introduce the Rayleigh number
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Then equations (2.1}-(2.3) may be reduced to the
dimensionless forms
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When R is so small that heat transfer by conduction
dominates that due to convection, the RHS of equation
(2.6) may be set equal to zero. If then the steady radial
heat flux per unit axial length is constant and equal to
Q, we have

T,
Q = — 2nexr,
ry

29}

where c is the volumetric heat capacity. It then follows
that
éT CT
e =§-—*~mconstant= -9 -Q
or dlnr,
(2.10)

2nck

where © is the temperature excess at radius r, = r_,
over that at radius r, = er,,. © is thus a characteristic
macroscopic radial temperature difference and may be
identified with AT . Note that we limit ourselves here
to the simplest axisymmetric thermal field. The field
(2.10) would be disturbed, for example, if there were
large differences between the thermal diffusivity of the
porous medium and that of the surrounding material.

In the previous study [1], we identified the charac-
teristic length L with the square root of the cavity
cross-sectional area. Analogously, we here identify L
with A!2 where A is the area of the radial cross-
section of the cavity. Accordingly, with equation (2.4)
restated in the form

kg@A'?
R=2920 @11)
Ky
we may finally express equation (2.5} as
o [18¥ oy
r— |- |+—-5+R=0 (2.12)
or \r or cz

3. SOLUTION FOR CYLINDRICAL CAVITIES
We consider the cavity bounded by the cylindrical
surface r, = aand the planesz, = + 3b. Wenote that
L = A' 2 = (ab)! % Then equation (2.12) is subject to
the conditions

s-12 ;12

= < A , I = L 3 :
¥=0 r<i; + 3404 (3.1)
W=0 r=0 and 27'% |z} <at?
Here -~ = b/a is the aspect ratio.
3.1. Exact solution
We now write
W(r, 2) = R[}4 = 22 + f(r, 2)] (3.2)
so that
I AN
() o (33)
ér \ror oz
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subject to the conditions
f=0

f: 22 - %‘;‘7
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We use separation of variables to solve equation
(3.3) subject to conditions (3.4) in the form

(34)
r=0 and A~

Z Y (r)- Z,{z).

B

We require that each Y, and Z, satisfy

rd {1(1}’ 1 4%z,
Y dr\r dr

‘2’* de = Ci’, (35)
with ¢, a constant. We note that for

o =204+ it 2 3.6)
with n a non-negative integer, the function
Z,(z

= C08 {¢,2) (3.7}

satisfies equation (3.5) and vanishes on z = + 34, as
required by the first of the conditions (3.4). It then
follows from conditions {3.4) and equation (3.5} that

Yy =r[4,(c,r) + B K, {cr}] (3.8)

We thus arrive at the solution

for.oy=r Z cos{c,z)[ 4,0 (e} + B,K {c,1)]
n =0
(39)

The second of conditions (3.4) requires that

(s
2 — L =1lm {r Y cos{c,z)
n=0

r—0

x [A0{c,r) + B,,K,(cnr}} (3.10)

and
P-ti=i z cos (e, 2)[ A1 1(c,1717)

+BK (e, i1 D] (31D

We find from Fourier analysis also that, in |z| < 34
= bi= Y Ceos{ez) (3.12)
n=0
with
84
C, = e 313
=T s G

The coefficient of cos{c,z} in all three of the expansions
{3.10)-{3.12) must be equal; and it follows that

B, =C

"
A, = "‘: 12
oL [

— ¢, K (et 2)] (3.14)
The solution is therefore

firozy=r 3 C,cosle,z

a=0
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Combining equations (3.2),(3.6), (3.13) and (3.15), we
obtain the solution for ¥

4z° 32
Wir. 2) = R/{w_zw_ r

n wii?

4 Lcos[(2n + 1ymi~tz]
(20 + 1)

({ Gt n — K[(2n + l)niﬁ“‘]}

I [(2n + Dmd™ 1 3]
L{@2n + 1mi~ 1]
+ K, [(2n + l)mt"”r]}}

3

(3.16)

The solution on the midplane is

R 2r L (~1)
1 -
{}" 0) { 2 12 Z 2;1+ I}
s-1
{ 120 + D — Ky[@n + Ut ]}

FIQn + 1mi™ 3]
L{2n + =A™ 1]

+ K, [(2n + )na "’:]]}

X

(3.17)

The series in equation (3.16) is rapidly convergent
for A small; and, in fact, it converges conveniently even
for 2 as large as 4 (Fig. 3}

3.2. Core How and boundary layers for small A

It is of some interest to examine equation (3.16).in
the limitas 4 - 0. For small enough 4 the leading term
of the summation dominates and we have

R} 4z%  32rces{mi™! %z}
x{"(?’, 2)7‘\."8*”{1 ”T——-—Yt—m————zjlz -

x Hﬁ - K, G)} -1—‘%1%% + K [mi~? 2;«]]4}.
(3.18)

We see that, for small 4, the whole cavity is occupied by

the core flow
Ri 4z2
Yo — 1 = — |,
8 [ };" ]

except for two boundary layer regions, one about the
axis r = 0, and one on the external cylindrical
boundary r = A7'Z The axial boundary layer is
dominated by the term in K ,[n47* ?r], and its radius
is accordingly O(4' ?); and the outer boundary layer is
dominated by the term in /,[zA™' %] so that its
thickness is also O(4'?) (Fig. 1). We note also that in
this limit of A small

¥o.ox RAB.

mix

(3.19}
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Fic. 1. Freeconvection at small Rayleigh number in cylindrical cavities. Structure of core flow and boundary
layers for aspect ratio A small. Numerals on Stokes streamlines in core are values of 800 W(RA).

3.3. Second form of exact solution efficient for large
Alternatively, we may write

W(r, z) = IR[A(r. z) — r*In (A1 2r)]  (3.20)
so that equations (2.12) and (3.1) reduce to
¢ /13 &2
e (-Q) +o =0, (3.21)
or \r ér fz

subject to the conditions
h=r’In(i'?r), 0<r<i ™ty z= 4442

(322)

B

1

h=0, r=0 and . '2 Jz|<ii'?

Separation of variables yields the solution of equa-
tions (3.21) and (3.22) in the form

x«

YY) Z,(2).

n=1

We require that each Y, and Z, satisfy

. 2
We note that for
e =22, (3.24)
where j, 1s the nth positive zero of J,,
Y. (r) = rJ(cr) (3.25)

satisfies equation (3.23) and vanishes on r = 0 and
471 2 asrequired by the second condition of equations
(3.22). It then follows from equations (3.22) and (3.23)
that

Z{z) = A,cosh{c,z), (3.26)

since ¥ (and hence Z,) is necessarily an even function
of z. We thus obtain the solution

P

hir.z)=r Y A,coshic,z)J {¢r)

n=1

(3.27)
The first of conditions (3.22) requires that

rln (A 2r) = z A, cosh(lc, At 2) J (cr); (3.28)

n=1

and we find from the Fourier-Bessel expansion (e.g.
[3]) that

rin (At %) = Z CJ {cr)

a=1

(3.29)

with
24129
= ’2 —7, (3.30)
‘]2(]'1)
Here
1
A, = | v*lnod,(jo)de. (3.31)

WO

Equating coefficients in equations {3.28) and (3.29), we
find

PR/
"7 I3 cosh(3ij,)

The solution for W is thus

(3.32)

¥(r, z) = 521[— rin (A* %)

+ Y A, cosh(c,,z).!l(cnr)], (3.33)
noa]

with 4, and ¢, given by equations (3.32)and (3.24). The
series in equation (3.33) converges rapidly for 4 large,
thus providing an efficient means of evaluating ¥ in
that case.

3.4. Core flow and boundary layers for large A

When Ais large enough, the leading term of the series
dominates and

R
Wi 2) = 7’ [— rln (A 2r)

241 2cosh(i 2j,2) J (A 2 j,r)
J%UL ) COSh(%"’Ul)

}. (3.34)

For large 4 the whole cavity is occupied by the core
flow ¥ = —iRr? In (X' ?r), except for the boundary
layers on the top and bottom bounding planes z =
+ 1212 Only within these boundary layers is the
second term in the square bracket of equation (3.34)
significant. This requires that the factor cosh
{4172 j,z)/cosh (34;) be not negligibly small with
respect to unity. Accordingly, A*” j,6 = O(1), where §
is the boundary layer thickness. Since j, x~ 3.83, this
implies that § = O(A™*7) (Fig. 2).

It is readily shown by differentiating equation {3.34)
with respect to r that, in the limit of large 4, the
maximum value of ¥ is

‘{Jm;\\ X R/f(d’e’:')s (335}
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F1G. 2. Free convection at small Rayleigh number in cylindri-

cal cavities. Structure of core flow and boundary layers for

aspect ratio A large. Numerals on Stokes streamlines in core
are values of 400eA'¥/R.

and that this occurs at

r=0, z=x(i) ' (3.36)
3.5. Hlustrative results

Figure 3 depicts the Stokes stream function for
cylindrical cavities in the dimensionless form R~ ¥
(r,z)for A = 025, 0.5, 1, 2, and 4. The plots are based on
calculations using the first few terms of equation
(3.16): even for A = 4 truncating the series at n = 3
gave adequate accuracy.

It will be seen that, for A as large as 0.25, there is
already some suggestion of the core flow and boun-
dary layers for small A depicted in Fig. 1 ; and similarly
the plot for 4 as small as 4 already approaches the core
flow and boundary layer pattern for large 4 shown in
Fig. 2.

4, SOLUTION FOR TOROIDAL CAVITIES

The previous study of 2-dim. free convection at small
Rayleigh number [1] revealed that the exact solution
for elliptical cavities was mathematically elementary
and, in particular, much simpler than that for rec-
tangular cavities. Similarly, we find here that the
solution for toroidal cavities is elementary and simpler
than that for cylindrical cavities.

We consider the toroidal cavity with radial cross-
section consisting of the primary logarithmic oval with
horizontal and vertical axes of length a and b, re-
spectively. We refer to a toroid with this cross-section
as a primary logarithmic toroid. Various relevant
properties of primary and secondary logarithmic ovals
are set out in the Appendix.

We then have equation (2.12) subject to the con-
dition that ¥ = 0 on the toroid

1693
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We have, as before, that the aspect ratio A = b/a. The
solution of equation {2.12) satisfying condition (4.1} is

‘..R (ne)l 4 ;Ll Zr )

W (e AT o)
Nei2 1 2) (e TS T
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Figure 4 is a dimensionless plot of the Stokes stream
function in the form 10{ze}!? (e4? + 2} W/R as a
function of the coordinates (4! ?r, 17! ?z). Equation
{4.2) implies that the maximum value of ¥, ¥
occurs at (r, z) = (2n 12 e 3* =12 0), and that

RA

w =T 4.3
\‘Pmdx (ﬁe)l z(e,iz + 2} ( )

It follows from the properties of logarithmic ovals
established in the Appendix that as ¥ increases from 0
to ¥ . the aspect ratio of the streamlines increases
from 2 to A{e/2)' 2; and that their shape changes
systematically from that of a primary logarithmic oval
to that of an ellipse.

5. SIMPLE EXACT SOLUTIONS FOR OTHER
CONFIGURATIONS

Various other simple exact solutions exist for axi-
symmetric free convection at small Rayleigh number.
These are for configurations of the porous solid in
which the radial cross-section is bounded by a logar-
ithmic variant of a conic section, with rZ in the
equation of the conic section replaced by rZ In(r,/a)
and adjustments of sign where required. In this way
one may, for example, secure solutions in which the
bounding surfaces and stream surfaces are ‘logarith-
mic’ paraboloids and hyperboloids of revolution, In
general these are of limited physical interest. They
involve infinite flow regions, and the large Reynolds
numbers in the far flow field prejudice the applicability
of the present small Rayleigh number analysis.

These objections do not hold, however, for toroidal
cavities. The primary logarithmic toroid considered in
Section 4 had internal radius r,, = 0. Solutions are
available also for cases where r,, # 0 and the cross-
section is a secondary logarithmic oval (see Appendix).
In view of result (A 10), the solution approaches that for
the 2-dim. elliptical cavity (Section 4 of ref. [1]) in the
limit of large r, o/a. This is physically obvious, since as
ryof@ —  any finite sector of the toroid becomes
indistinguishable from a long cylinder of elliptical
cross-section with a linear temperature gradient across
1t.

6. VARIATION OF R™'W,__ WITH CAVITY SHAPE

The quantity R™' W is a measure of the relative
strength of free convection at small R in a particular
axisymmetric porous cavity. It is of interest to examine
the dependence of R™! ¥, on cavity shape and on
the aspect ratio A In Fig. 5 we compare the variation of
R™'W¥ . with A for cylindrical and toroidal cavities.
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F1c. 3. Free convection at small Rayleigh number in cylindrical cavities. Dimensionless plot of the Stokes
stream function for aspect ratio 4 = (2)0.25,(b}0.5,(c) 1, (d) 2, and (e}4. Numerals on the curves are values of
10* W/R.

FiG. 4. Free convection at small Rayleigh number in toroidal cavities. Plot of the Stokes stream function in
the dimensionless form 10(re)' * (eA* + 2) W/R. The coordinates are A'?r, 71?2z Note that the plot is
invariant with respect to the aspect ratio A.
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F1G. $. Free convection at small Rayleigh number in axisymmetric and 2-dim, cavities of various shapes.

Dependence of the strength of convection on the aspect ratio A. The variation of ¥, /R for cylindrical and

toroidal cavities shown as full curves. Asymptotic behaviour for cylindrical cavities is also shown, The
variation of @, /R for rectangular and elliptical cavities shown as broken curves.

We show on this figure also the variation of R™' @,
with A for 2-dim. free convection in rectangular and
elliptical porous cavities [1]. @, is the maximum
value of the dimensionless stream function. Note that
in view of the orientation-invariance theorem for 2-
dim. convection [1], @, (A7") = @, (2). In cylindri-
cal cavities variation with 4 of the position of ¥, 1.¢.
of the centre of the toroidal convective roll, is also of
interest (Fig. 6).

6.1. Cylindrical cavities: dependence of R™ W, on A
Note the asymptotes R ' ¥, = A/8as i — 0,and
R W, . = (ded) P asi— = (Fig. 5)

6.2. Cylindrical cavities: position of ¥ .

We denote by (r, z) = (r,, 0) the position of ¥,
(Fig. 6). The quantity A*r, expresses the position as a
fraction of cavity radius. Although our calculations
give only approximate values of 4! %r,, they indicate
that this quantity remains close to its value as 1 — =,
0.6063, for A as small as 1. It decreases to about 0.56 as
A decreases to 0.25.
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F1G, 6. Free convection at small Rayleigh number in cylindri-

cal cavities. Dependence on aspect ratio 4 of the position of

the centre of the convectiveroll. Thisisat{r,z} = {r, 0}, where

¥ = Y. Note that 1'7 r, expresses the position as a
fraction of cavity radius.

63. Toroidal cavities: dependence of R™' W, on A
Tt follows from equation (4.2) that ¥, occurs at
(r,z) = Qr 12 ¢™3# ;712 (), and that

_ RA

(7o) 2 (o4 7 2)° (64)

max
Itissimply shown that ¥, for toroidal cavities hasits

maximum value (8z¢®)"'? =~ 007338 when . =
(2/e)'? ~ 0.8578 (Fig. 5).

6.4. Discussion

It is of interest to compare the results brought
together in Fig. 5. All four curves are essentially
similar. The curve for toroidal cavities has its maxi-
mum at, and is symmetrical about, 1 = (2/¢}'~. The
curve for ¢ylindrical cavities appears also to have its
maximum at, and to exhibit symmetry about, A =
(2/e)! 2. The maximum value for cylinders is about
0.065, rather less than for toroids. Analogous re-
lationships hold for 2-dim. cavities: for both elliptical
and rectangular cavities R™'®_,, is symmetrical
about A = 1 and has its maximum there. The
maximum for rectangles, 0.0737, is somewhat less than
that for ellipses, 0.0796.

7. RELATIVE MAGNITUDE OF CONVECTION AND
CONDUCTION. CRITICAL R

We now examine the relative magnitude of con-
vective and conductive heat transport in axisymmetric
systems. This provides estimates of the critical Ray-
leigh number for applicability of the present analysis
{cf. {1]). We take as the measure of convective trans-
port the quantity H, the total convection of heat within
the cavity acrossits mid-plane r, < a,z, = 0. Then, for
both toroidal and cylindrical cavities, we have
(3
H= zch i‘fﬁ (e 0) Todr,) dry.  (T1)
o Ory
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¥, 7. Free convection at small Rayleigh number in axisym-

metric and 2-dim. cavities of various shapes. Dependence on

the aspect ratio 4 of the critical value of R for applicability of

the small Rayleigh number analysis. Relation for toroidal

cavities and asymptotic behaviour for cylindrical cavities

shown as full curves. Relations for rectangular and elliptical
cavities shown as broken curves,

Integration of equation (2.10) yvields
(1.2}

with 8 convenient value taken for the arbitrary n-
tegration constant. Putting equation (7.2) into equa-
tion (7.1) and using the third of equations (2.8), we find
that

47y d

H=—QA'? f Ei (r. 0) In[r/A"*2a)] dr.
o2
(7.3)

1.2. Toroidal cavities: critical R
Using equation (4.2} in equation (7.3} and perfor-
ming the integration, we find that
Rei

H = Q 12 N

Ame) 2 (ed? + 2) 4

For toroidal cavities we take as the measure of
conductive transport the quantity X, the total radial
heat conduction within the cavity across the cylinder
re = ¢ 'Za. Evidently

K = Qb = 2{ne) 4 212 Q4" (1.5}

We introduce the ratio § = H/K as the measure of
the relative importance of convective and conductive
heat transport in the system. It then follows from
equations {7.4) and (7.5} that

R€3 k3 ’;Li 4

g ‘‘‘‘‘‘

ani Hea? +2) (78

Applicability of the present analysis requires that
convective heat transfer be small compared with
conductive heat transfer, i.e., say, that f < 0.1. We thus
obtain the criterion

n

L. R. Puiip

The critical value of R, R, has its minimum value

16 /3n\*
| =~ 09532
15 <2e2>
when A= (2/3@)‘ 2 x 04952. As A — 7, R, behaves
like  (ne)** 232 x 0.6838 2°?%; and as 4 — 0, R,
behaves like
4 14 -
ggﬁﬁ*‘ 2 x 05031 47 (Fig. 7).
7.3, Cylindrical cavities: critical R
For cylindrical cavities equation {7.3) reduces to

~ 12 oA

p
% (. 0) In (212 dr. (7.8)
E

A
He= - Q472
JO
General expressions for H may be found by using
equations (3,18) or (3.33) in equation {7.8) and perfor-
ming the integration. The results are complicated and
we limit ourselves here to examining H in the limits of
small and large i
When 1 is small, convective heat transport is con-
centrated in the axial boundary layer (Section 3.2}
Within this boundary laver

nr K {’sz?
a2 1 \}'z;z

‘R
= _erl 2}352

Accordingly, limiting the integration to the axial
boundary layer, we find

24 Ayt 7y g
L ™ (“ 551 z)h’l {4 ryde

Wi, 0) =~ {

{7.9)

*R
H =~ A!Z:’r
LT

= — QA“%’E;E{QR”};@}. (7.10)

For cylindrical cavities we define K as the total
radial heat conduction in the cavity, so that

K =0b=1204'2

1t follows from equations (7.10) and (7.11) that, for 4
small,

{7.11)

R*I 2 n 2/2»,3! 2

Bx- 8 b4

{7.12)

This yields the following criterion on R for cylindrical
cavities

Asmal, R< Ry =~ —

On the other hand, when 1 is large (Section 34),
¥(r, 0) x — SRr¥1n (A" ?r). (714)
Putting equation (7.14) in equation (7.8) and integrat-
ing, we find

JR ,
H=Q4'? - (7.15)
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Combining this with equation (7.11) gives
(7.16)

We thus obtain the criterion on R for cylindrical
cavities:

4
3

22,

Alarge, R< R, x (7.17)
The behaviour of R, in the limits of small 4, equation

{7.13), and large 4, equation (7.17), is shown in Fig. 7.

7.4. Discussion

In Fig. 7 we bring together results for cavities of
various shapes on the variation with 2 of the critical
value of R below which the small Rayleigh number
analysis is applicable. As well as the present results for
toroidal and cylindrical cavities, we show also those
found [ 1] for elliptical and rectangular cavities.

The behaviour for toroids and cylinders is generally
similar. For both cavity shapes R, x A*?asl — «;in
each case R, passes through a minimum value of about
1 (at A =~ 0.5 for toroids and at A =~ 0.12 for cylinders);
and it then increases comparatively slowly as A de-
creases to 0: as i~ '? for toroids and as A 172
(—1In A)" ! for cylinders. In both cases R, = 0(1)in 0.1
<A<

These results are broadly similar to, and consistent
with, those for 2-dim. cavities [1]. For both elliptical
and rectangular cavities, however, the increase as 4 —
« is as A, and there is a slow decrease to a constant
asymptotic value as 4 — 0.

8. CORE FLOWS AND BOUNDARY LAYERS IN

AXISYMMETRIC
AND TWO-DIMENSIONAL CAVITIES

8.1. Cylindrical cavities

We have seen in Section 3 that in the limit both as
/—0 and as A — = the small R convective flow
pattern in cylindrical cavities tends towards a core flow
with two boundary layers. For 4 — 0, the core flowis a
horizontal parallel flow, with one boundary layer on
the axis and a second on the external cylindrical
boundary (Fig. 1). For both boundary layers § =
O(A'%). (The analysis leading to equation (7.9) gives &
x (2/n)At? for the axial layer.) For 4 —» 2, the core
flow is a vertical parallel flow, with boundary layers of
thickness O{17 ') on the top and bottom bounding
planes (Fig. 2).

8.2. Rectangular cavities

The solution for small R convection in rectangular
cavities [1] leads similarly to a core flow with two
boundary layers in the limits both as 4 - Oand as A —
2. An analysis similar to that of Sections 3.2 and 3.4
shows that as A — 0 the solution tends towards a
horizontal parallel core flow with boundary layers of
thickness O(4'?) on the two vertical bounding walls;
and thatas A — x the solution tends towards a vertical
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parallel core flow with boundary layers of thickness
O(A™ ') on the two horizontal bounding walls.

8.3. Toroidal and elliptical cavities: flow patterns in-
variant with 4

The solutions for toroidal (Section 4) and elliptical
[1] cavities are in marked contrast to the foregoing.
The toroidal solution, equation (4.2), may readily be
rewritten as

b 4 (me)* 2 [ (me) 2 )
- et i

+ 2(/1“’2:)2]‘ (8.1)

Plotted against the coordinates (4! 2r, ™' ?z), the flow
pattern is invariant with respect to variation of A (Fig.
4). Evidently no pattern of core flow and boundary
layers can emerge here in the limits 2 — 0 or =,
Similarly the elliptical solution (equation (4.2) of ref.
[1]) yields a plot of the flow pattern which is invariant
with respect to variation of 1. In that case also no
pattern of core flow and boundary layers can emerge.

84, The geometrical origin of cores and boundary
layers at small R

The existence of cores and boundary layers in the
cases treated in Sections 8.1 and 8.2, and their absence
from those of Section 8.3, indicates their geometrical
origin. Cores and boundary layers emerging in axisym-
metric and 2-dim. free convection at small Rayleigh
number are essentially artifacts of cavity geometry:
they are not inherent in the physics.

The various solutions developed here and in ref. [1]
are consistent with the following interpretation for
cavities of shapes other than toroidal or elliptical
Consider a sequence of cavities, all of the same basic
shape, but with the aspect ratio A free to vary. Then, for
axisymmetric systems with A about unity, the flow field
isessentially that for the toroidal cavity, equation (4.2),
the effect of the particular cavity geometry being
limited to adjustments near the boundaries. On the
other hand, the influence of the boundary geometry
becomes dominant bothas 4 — 0andas A — x,anda
core/boundary layer flow emerges. For 2-dim. cavities
the interpretation is similar, except that in this case the
flow with A about unity is basically that for the
elliptical cavity (equation (4.2} of ref. [1]}.

8.5. The special character of toroidal and elliptical
cavities

The foregoing considerations indicate the special
character of the toroidal and elliptical solutions. They
represent, respectively, fundamental axisymmetric and
2-dim. flow patterns for convection at small R. They
describe the basic axisymmetric toroidal convective
roll, and the basic 2-dim. elliptic convective rol}; and
they lead naturally to regular expansionsin R, a matter
to be pursued in a later paper.
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APPENDIX
THE LOGARITHMIC OVAL

The curve

—eriinr, —222=0 (A1)
is a logarithmic oral with horizontal axis of unit length
running from(r, z,) = (0,0} to (1,0}, and with vertical axis of
unit length running from (e~ 2, — ) to (¢ 7', §). The aspect
ratio, 4, is equal to 1. It is readily shown by integration that
the area of the oval, equation (Al),

A = flme)'? (A2)
More generally, the curve
r2 22
“euﬂ;m';*-zb;;-;o (A3)

is a logarithmic oval with horizontal axis of length a and with
vertical axis of length b. The aspect ratio, 4, isequal to b/a. The
area of the oval is then

(?Eﬂ)l 2

4= ab.

4
" {Ad4)

We refer to all ovals describable by an equation of the form
(A3)as primary logarithmic ovals. On the other hand, the set of
curves parametrized by E?

2 2
¥y Y 2
Fn X222 -F2 0gE'g}

a a b2 (A3)

— €

J. R. PHiLIP

represents a nested set of ovals. We refer to all ovals satisfying
(AS3) for E° > 0 as secondary logarithmic ovals.

Taking L = A'? here, as before, we use the first of
equations (2.8} to rewrite (A3) and (A5) in the dimensionless
forms

(me)t* A1 2r

—eitrtin 5 - 222 =0, (A6)
14 312 2*"
—ei’rfln (rey "4 77 _ 2 =F, O0<E*g / ~.
2 {me)t?
(A7)

It is of some interest to examine the form of the secondary
ovals in the limit as E? — 24/(ne)! 2. Firstly we note that for
E? = 2i/(re)*? the oval reduces to the single point (r, z) =
(2r i g™ 34 1712 Q). We then write

p=2nTte3 m02 L B = 20/(re)t? ~ £ (A8)
Expanding the first term on the LHS (A7) as a Taylor seriesin
pabout r = 2n71#* g7 3% 1712 we find

g A2
2 {re)t?

—eilp? + ..., (A9)

Tt follows that, in the limit as E* —» 24/[(re)* #),equation {A7)
reduces to

el p? 4222 =2 (A10)

i.e. the logarithmic ovals reduce to ellipses with aspect ratio
ie/2)' 2 centred on (2r" 1 734 112 (),

As E? increases from 0 to 24/(re)' 2, the aspect ratio of the
ovals increases from 4 to i(e/2)'” and their shape changes
systematically from that of a primary logarithmic oval to that
of an ellipse.

Curve 0 of Fig. 4 is a plot of the primary logarithmic oval,
equation (A6). The curve labelled n(n = 1, 2,..., 10}isa plot of
the secondary logarithmic oval, equation (A7), for E? =
ni/5(me) .

LA CONVECTION LIBRE A SYMETRIE AXIALE AUX PETITS NOMBRES
DE RAYLEIGH DANS LES CAVITES POREUSES

Résumé—On trouve de différentes solutions précises pour la convection a symétrie axiale aux petits nombres
de Rayleigh (R) provoquée par un gradient de température stationnaire et radial qui est perpendiculaire au
champ de gravitation. On présente en détail des résultats pour des cavités cylindriques et toroidales 4 rapport
arbitraire des axes (1). La valeur de R critique pour I'application de I'analyse est de O(43) aux grandes
valeurs de 4, de O(1) pour 0,1 < 4 < 1, et aux petites valeurs de 4 elle est de O(1™7) pour les toroides et de
O(A7 [ ~1n 2]} pour les cylindres. Les solutions précises pour les torcides donnent un apercu de la
caractéristique de rouleau toroidal de la convection 4 symétrie axiale aux petites valeurs de R,

Pour les cylindres (ainsi que pour la convection a deux dimensions aux petites valeurs de R dans le cas des
rectangles) un écoulement de coeur avec des couches limites se produit et quand 4 —» Oetquand 4 — . Le
type d’écoulement dans les toroides (ainsi que dans les ellipses) est cependant invariant, sans écoulement de

coeur ni couches limites.

De grandes analogies entre la convection 4 symétrie axiale et celle a deux dimensions aux petites valeurs de
R valent également pour les propriétés telles que la variation avec A de Pintensité de la convection et de la
valeur critique de R.
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DIE ACHSENSYMMETRISCHE FREIE KONVEKTION BEI KLEINER
RAYLEIGH-ZAHL IN POROSEN HOHLRAUMEN

Zusammenfassung— Verschiedene genaue Losungen werden fiir achsensymmetrische K onvektion gefunden,
die durch ein stationdres, radiales, zum Gravitationsfeld senkrechtes Temperaturgefille in pordsen
Hohltdumen bei kleiner Rayleigh-Zahl (R) hervorgerufen ist. Ausfiibrliche Ergebnisse werden fir
zylindrische sowie ringformige Hohlrdume mit beliebigem Achsenverhaltnis (4) angegeben. Der fiir die
Anwendung der Analyse kritische R-Wert ist O(1%?) bei grossen 1-Werten, O(1) bei 0,1 < A < 1 und bei
kleinen 4-Werten O(i™'?) fiir Toroide und O(4™ '3[ —In 1]™! fir Zylinder. Die genauen Lésungen fiir
Toroide geben Einsicht in die ringwulistige Charakteristik der achsensymmetrischen Konvektion bei kieinen
R-Werten.

Fiir Zylinder (sowie fiir zweidimensionale Konvektion bei kleinen R-Werten in Rechtecken) findet eine
Kemnstrémung mit Grenzschichten sowohl wenn 4 — 0 als auch wenn A — o statt. Bei Toroiden (sowie bei
Ellipsen) ist das Strémungsbild jedoch gleichbleibend, ohne Kerne noch Grenzschichten.

Gute Analogien zwischen achsensymmetrischer und zweidimensionaler K onvektion bei kieinen R-Werten
gelten auch fiir solche Eigenschaften wie die Anderung mit 1 der Konvektionsstirke sowie des kritischen R-

Wertes.

CBOBOHAS AKCUANBHO-CUMMETPHYHASA KOHBEKUMWA NMPH HEBOJBHIMX
3HAYEHHUAX YHCJIA PEJIESS BHYTPU IMOPUCTBIX MOJIOCTEN

AnHoTauns — PajjinuHble TOYHLIC DEHIEHHs MOJyYaeTcs AN aKCHATbHO-CHMMETPHYHOR KOHBEKUHH
BHYTpH HOPDHCTHIX mosiocTell o6ycsioBeHa yCTOHYMBRIM DPajHaNbHBLIM TEMICPATYPHbIM TDaAMEHTOM
REPHEeHANKYIAPHLIM K PaBHTAUMOHHOMY 1o, [ToapoOHbie pe3yipTarhi NPEACTABAAOTCH ANA UH-
JIMHAPHICCKUX ¥ TOPOHAATbHBIX NOJOCTEH € NPOU3BONBHLIM COOTHOLICHHEM JUIHHOR OCH K KOPOTKOH
(4). Kpurudeckoe uuciio Penes Ansa NpUMeHeHHs aHaiu3a Npu GOJBLIMX IHAYCHUAX 4 — O(1*'%), npu
0.1 €4i<1 — O() v npu uebonpMX 3Hauenuax i — O(A~Y2) ans Topounos, a i WHTHHADPOB —
O(A™ "2 —1n 4]~ 1). Tounsle pelreHus 118 TOPOHIOB MO3BONKIOT TOHNUMATD OCOOEHHOCTL TOPOHAAN -
HOTO CBEPTKA aKCHAALHO-CHMMETPHYHONH KoHsekuuu npu Heboabinx 4ucnas Penes.

Jns uMJIMHAPOB (M TakKXe U1 ABYXMEPHOH KOHBEKLHM NpH HeOONbIIMX 3HAUCHMAX uuciaa Pejes
BHYTPH NpPAMOYIOJIbHAKOB) SAPOBHBIA MOTOK ¢ [IOFPAHHYHBIMH CJIOSAMH CYLIECTBYeT, korga A —0 u
xoraa A — oc. ORHAKO, XapakTep MOTOKA B TOPOMAAX (M TAKXKE B JJUIMNCAX) — HHBApHaHTHa, Oe3 szep
¥ MOrPaHUYHBIX CJIOEB.

Biuikue aHaiorHy MEXAY aKCHaAbHO-CHMMCETPHYHON M /IByXMEDHOH KOHBEKUMM NPH HeOOMbIINX
uyucnax Pesies cyuwlecTBYIOT TAKXE [UTA TAKHX OCODEHHOCTEH KaK M3MEHEHHWE C CMJM KOHBEKLHH H

KPHUTHYECKOT O 3Ha4YeHUs YHCha Penes.
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