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Abstract-Various exact solutions are found for axisymmetric small Rayleigh number (R) convection in 
porous cavities due to a steady radial temperature gradient normal to the gravitational field. Detailed results 
are presented for cylindrical and toroidal cavities with aspect ratio (i,) arbitrary. The critical R for 
applicability of the analysis is 0(i.3 2, at large i,, U(1) in 0.1 G A < 1, and at small % is O(I- ’ *) for toroids and 
0(X’ 2[-lni.]-‘) for cylinders The exact solutions for toroids offer insight into the toroidal roll 
characteristic of axisymmetric convection at small R. 

For cylinders (and also for 2-dim. convection at small R in rectangles) a core flow with boundary layers 
occurs both as i + 0 and as i. -+ X. On the other hand, the flow pattern in toroids (and also in ellipses) is 
invariant, free of cores and boundary layers. 

Close analogies between axisymmetric and 2-dim. convection at small R hold also for properties such as 
the variation with i of the strength of convection and of the critical value of R 

NOMENCLATURE 

radial cross-sectional area of axisymmetri- 
cal porous cavity; 

coefficients in equations (3.8) and (3.27); 
length of horizontal (radial) axis of radial 
cross-section of cavity; 
coefficients in equation (3.8); 
length ofvertical axis of radial cross-section 
of cavity ; 
coefficients in equation (3.12); 
constants defined by equation (3.6); 
volumetric heat capacity of porous 
medium; 

parameter of secondary logarithmic oval; 
function defined by equation (3.2); 
gravitational acceleration ; 
total convective heat transport across the 
horizontal mid-plane of the cavity; 
function defined by equation (3.21); 
modified Bessel function of the first kind of 
order one ; 
integrals defined by equation (3.31); 
Bessel functions of the first kind of orders 
one and two; 
rlth positive zero of J, ; 
total radial conductive heat transport 
within cavity (for toroidal cavity, maximum 
value of this quantity); 
modified Bessel function of the second kind 
of order one ; 
permeability of the porous medium ; 
characteristic macroscopic length of the 
system ; 
integer; 
of order X; 
steady radial heat flux per unit axial length ; 
Rayleigh number ; 
maximum Rayleigh number for applica- 

r, z, 

rl, 

r,, z*, 

Y*1r 

r*o, 

T, 

T*, 

AT,, 

u, w, 

u*, w*, 

c, 

Y,, 

Z”, 

bility of small R analysis; 
dimensionless forms of r*, z* ; 
value of r at which Y = Y max in cylindrical 
cavities ; 
cylindrical space co-ordinates for axisym- 
metric systems, with z* vertical, positive 

upwards ; 
reference radius ; 
internal radius of toroidal cavity ; 
dimensionless form of T, ; 
temperature ; 
characteristic macroscopic horizontal tem- 
perature difference of the system; 

dimensionless forms of u.+, w*; 
components of flow velocity in the r.+, z* 

directions; 
dummy variable in equation (3.31); 

functions of r in equations (3.5) and (3.23); 
functions of z in equations (3.5) and (3.23). 

Greek symbols 
coefficient of thermal volume expansion ; 
ratio of convective to conductive heat 
transfer; 
boundary layer thickness; 
temperature excess at radius r*l over that 

at radius er,, ; 
thermal diffusivity of the porous medium ; 
aspect ratio, b/u; for rectangular and el- 

liptical cavities, ratio of length of vertical 
axis to that of horizontal axis (note that this 
usage differs from that in ref. [l]); 
kinematic viscosity of the fluid in the 
porous medium ; 
for rectangular and elliptical cavities, maxi- 
mum value of dimensionless stream 
function ; 
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Y, Stokes stream function in dimensionless 
form ; 

y mad maximum value of Y ; 

y*, Stokes stream function. 

1. INTRODUCTION 

A PRI:L’IO~S paper [l] presented exact solutions for 
small Rayleigh number free convection due to a 
temperature gradient normal to the gravitational field 
in 2-dim. porous cavities of various shapes. As well as 
being relevant to smalf Rayleigh number flows occur- 
ring in practice, these solutions represent natural 
points of departure for analyses involving regular 
expansion in the Rayleigh number. 

The present paper develops the extension of ref. [I] 
to the problems of axisymmetric small Rayleigh num- 
ber free convection in porous cavities. The work is 
devoted mainly to cylindrical and toroidal cavities, 
both of arbitrary aspect ratio. As in the previous study, 
we need only relatively simple mathematics to secure 
the required exact solutions. Here also we refer 
specifically to temperature-indu~d flows, but the 
modification to soIute-induced Hows will be evident. 

2. FLOW EQUATION FOR AXISYMMETRIC FREE 
CONVECTION AT SMALL RAYLEICH NUMBER 

The equations governing axisymmetric steady con- 
vection within a porous medium induced by a tem- 
perature gradient may be written (e.g. [Z]) 

where the Stokes stream function ‘I‘, is such that 

1 ?Y* 1 ?Y* 
,i*= __.) “*Zer _.-. 

?_, 
(2.3) 

r* * r* (r* 

We introduce the Rayleigh number 

Then equations (2.1)-(2.3) may be reduced to the 
dimensionless forms 

cl’? ?T PT 
-.-_=_ 

?r (12 
+ r ---,- , 

k- 
(2.6) 

(2.7) 

When R is so small that heat transfer by conduction 
dominates that due to convection, the RHS ofequation 
(2.6) may be set equal to zero. If then the steady radial 
heat flux per unit axial length is constant and equal to 
Q, we have 

where c is the volumetric heat capacity. It then follows 
that 

?T* = CT, _ Q 
r* &. 

- constant = - __ = -0 
* ?lnr, zrrclc 

(2.10) 

where 0 is the temperature excess at radius r* = r+, 
over that at radius r* = er,, 0 is thus a characteristic 
macroscopic radial temperature difference and may be 
identified with AT,. Note that we limit ourselves here 
to the simplest axisymmetric thermal field. The field 
(2.10) would be disturbed, for example, if there were 
large differences between the thermal diffusivity of the 
porous medium and that of the surrounding material. 

In the previous study [ 11, we identified the charac- 
teristic length L with the square root of the cavity 
cross-sectional area. Analogously, we here identify L 
with A’ ‘, where A is the area of the radial cross- 
section of the cavity. Accordingly, with equation (2.4) 
restated in the form 

we may finally express equation (2.5) as 

(2.12) 

3. SOLUTION FOR CYLINDRICAL CAVITIES 

We consider the cavity bounded by the cylindrical 
surface r* = a and the planes z* = F $b. We note that 
L = Ai2 = (uh)’ ‘. Then equation (2.12) is subject to 
the conditions 

Y = 0, r < ;.- i 2, I = & 52.’ z; 
(3.1) 

Y = 0, I^ = 0 and i.-’ ‘, ]z] <i.’ *. 

Here i. = h/a is the aspect ratio. 

3.1. Exact solution 
We now write 

Y(r, z) = iR[$ - 2’ +.f(r, z)] 

so that 

(3.2) 

Note that 

I ; 1 T 1 _ = .__ = - ; - zz --- ; 
i’* =* L T, AT, 

(3.3) 
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subject to the conditions 

f= 0, Y < i-i 2, z = rfi fi”” 2, 
(3.4) 

.f’= 22 - $., r = 0 and 3,-1,2, jzl < +j.’ 2. 

We use separation of variables to solve 
(3.3) subject to conditions (3.4) in the form 

2 Y,(r) . Z,(z). 
,I =* 

We require that each Y,, and Z,, satisfy 

equation 

1 d2Z,, -- 2 = cz* 
Z, dZ 

(3.5) 

with c, a constant. We note that for 

C” = (20 + l)n?i 2, (3.6) 

with n a non-negative integer, the function 

Z,(z) = cos (C”Z) (3.7) 

satisfies equation (3.5) and vanishes on z = f 52, as 
required by the first of the conditions (3.4). It then 
follows from conditions (3.4) and equation (3.5) that 

Y,(r) = r[.B,l,(c,r) + B,K,(c,r)]. (3.8) 

We thus arrive at the solution 

f(r, z) = r i Cos (fg)[A,ll(c,r) + B,K ,(c,rj]. 
n=O 

(3.9) 

The second of conditions (3.4) requires that 

Ip 
“2 * - hi- = fis 

i 
r aT0 cos (c$) 

x [A,l,(c,r) -I- B,K,(c,r) 
1 

(3.10) 

and 

+ R,K,(c,i-")], (3.11) 

We find from Fourier analysis also that, in /zJ < $, 

- - $2 = i: c,cos (c,z) .J (3.12) 
II -0 

with 

c, = (-l)n+‘. 
8A 

n3(2n i- 1)3’ 
(3.13) 

The coefficient of cos(c,z) in ail three of the expansions 
(3.fO)-(3.12) must be equal; and it fotlows that 

B, = c,C,, 

c 
A,, = ~.L--- [i’ ’ - c,Ji(c,A-’ ‘jJ, (3.14) 

I,(c,i- l 2) 

The solution is therefore 

j’ 2 - 
x . 

[ 

c,K l(cnil- l 2, 
----I,@-) + cJCt(t‘,rf (3.15) 

l,(c”i- 1 2, 1 

Combining equations (3.2), (3.61, (3.13) and (3.15), we 
obtain the solution for Y 

qq., 2) =: F 3 32r 
1 - t!! - ___ 

a2J' 2 

x i (-lf” 
cos[(Zn f f)7ci-1 "z] 

n -0 (2n+l)2 -- 

/! 
X 

ii " (2n + 1)n 
K,[(2n + l)rL i] 

I 

x r,Cf29_+ 1 )x;i- ’ ‘r] 

I&h + lfni-‘] 
7, 

+ K,[(Zn + l)7rl-‘2r] 
li 

. (3.16) 

The solution on the midplane is 

+ K,[(2n + l)7G1 ‘r] 
I 

1 (3.17) 

The series in equation (3.16) is rapidly convergent 
for i, small; and, in fact, it converges conveniently even 
for i as large as 4 (Fig. 3). 

3.2. Core $00~ anJ ~ou~~~ffr~ lnyws jor small 1 

It is of some interest to examine equation (3.16).in 
the limit as /; -+ 0. For small enough i, the Leading term 
of the summation dominates and we have 

We see that, for small i, the whole cavity is occupied by 
the core Row 

except for two boundary layer regions, one about the 
axis r = 0, and one on the external cylindrical 
boundary r = A- 2. The axial boundary layer is 
dominated by the term in K , [d- ’ *r], and its radius 
is accordingly Q(i*’ “); and the outer boundary layer is 
dominated by the term in I,[rG-’ 2r] so that its 
thickness is also O(i;’ *) (Fig. 1). We note also that in 
this limit of i, small 
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FIG. 1. Free convection at small Rayleigh number in cylindricalcavities. Structure ofcore Row and boundary 
iayers for aspect ratio 2. small. Numerals on Stokes streamlines in core are values of 800 T&I). 

3.3. Secotidjorm of exact solution eficient for large i, 
Alternatively, we may write 

Y(r, 2) = fR[h(r. z) - r2 In 0.’ * r)] (3.20) 

so that equations (2.12) and (3.1) reduce to 

(3.21) 

subject to the conditions 

I7 = r2 In (j.’ 2 r), 0 < r < i.-’ 2, 2 = * I;.’ “; 

(3.22) 
h = 0, r = 0 and i.-’ 2, jz/ < ii’ ‘. 

Separation of variables yields the solution of equa- 
tions (3.21) and (3.22) in the form 

,,C, Y,(r) Z,(z). 

We require that each Y, and Z, satisfy 

2 = - c,“. (3.23) 

We note that for 

C” = 1.r 2.j”, (3.24) 

where,j, is the Frth positive zero of Jr, 

Y,(r) = rJ,(c,r) (3.25) 

satisfies equation (3.23) and vanishes on r = 0 and 
i.- ’ ‘, as required by the second condition of equations 
(3.22). It then follows from equations (3.22) and (3.23) 
that 

Z,(z) = A, cosh(c,z), (3.26) 

since V! (and hence Z,) is necessarily an even function 
of z. We thus obtain the solution 

h(r, Z) = r C A,cosh(c,z)J,(c,r). (3.27) 
n-1 

The first of conditions (3.22) requires that 

r In (;_I *r) = c A,cosh(&,R’ 2, .I,(c*,r); (3.28) 
n=l 

and we find from the Fourier-Bessel expansion (e.g. 
[3]) that 

(3.29) 

with 

Here 

c = 2i.r 2.f* 
,I 

-XC7 
(3.30) 

‘1 
.f, = 

i 
v2 In r J, (j,r)dr. (3.31) 

.0 

Equating coefficients in equations (3.28) and (3.29), we 
find 

‘12 
A, = --_?’ .fn 

J&j,) cosh()&,) ’ 

The solution for \y is thus 

(3.32) 

Rr 
Y(r, 2) = - 

2 L 
- r In (;.’ 2r) 

+ f il,cosh(c,z)J,(c,r) 1 , (3.33) 
11 =I 

with A,, and c, given by equations (3.32) and (3.24). The 
series in equation (3.33) converges rapidly for i. large, 
thus providing an eficient means of evaluating Y in 
that case. 

3.4. Core flow urrd horfr&zry layersfor large i. 
When 2 is large enough, the leading term of the series 

dominates and 

Y(r, z) = ; 
i 

- r In (i.l 2r) 

2i+’ ’ cosh(i’ 2,j,z)J,(i,1 2.j,r) 
+p 

I Ji(j,)cosh($jr) 
(3.34) 

For large i. the whole cavity is occupied by the core 
flow Y = - fRr2 In (T.’ ‘r), except for the boundary 
layers on the top and bottom bounding planes 2 = 
+ ii.’ 2. Only within these boundary layers is the 
&ond term in the square bracket of equation (3.34) 
significant. This requires that the factor cash 
(Ali2 j,z)/cosh @jr) be not negligibly small with 
respect to unity. Accordingly, ,I’!‘j,6 = U(l), where 6 
is the boundary layer thickness. Since j, = 3.83, this 
implies that 6 = O(ll-rl’) (Fig. 2). 

It is readily shown by differentiatingequation (3.34) 
with respect to P that, in the limit of large j., the 
maximum value of Y is 

Y ,,,.,, * R,+W, (3.35) 
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Core 

! 
FIG. 2. Free convection at small Rayleigh number in cylindri- 
cal cavities. Structure of core flow and boundary layers for 
aspect ratio k large. Numerals on Stokes streamtines in core 

are values of 400 elY/R. 

and that this occurs at 

r = 0, z z (e;)-t 2. (3.36) 

3.5. iiiusfr~t~~e results 

Figure 3 depicts the Stokes stream function for 
cylindrical cavities in the dimensionless form R- ’ Y 
(r, z) for 1 = 0.25,0.5,1,2, and 4. The plots are based on 
calculations using the first few terms of equation 
(3.16): even for i = 4 truncating the series at n = 3 
gave adequate accuracy. 

It will be seen that, for 1 as large as 0.25, there is 
already some suggestion of the core flow and boun- 
dary layers for small i, depicted in Fig. 1 ; and similarly 
the plot for 1 as small as 4 already approaches the core 
flow and boundary layer pattern for large i shown in 
Fig. 2. 

4 SOLUTION FOR TOROIDAL CAVITIES 

The previous study of 2-dim. free convection at small 
Rayleigh number [l] revealed that the exact solution 
for elliptical cavities was mathematically elementary 
and, in particular, much simpler than that for rec- 
tan~lar cavities. Similarly, we find here tbat the 
solution for toroidal cavities iselementary and simpler 
than that for cylindrical cavities. 

We consider the toroidal cavity with radial cross- 
section consisting of the primary logarithmic oval with 
horizontal and vertical axes of length a and 6, re- 
spectively. We refer to a toroid with this cross-section 
as a pr~??~ur~ ~ogarif~z~~~ ford. Various relevant 
properties of primary and secondary logarithmic ovals 
are set out in the Appendix. 

We then have equation (2.12) subject to the con- 
dition that ‘I’ = 0 on the toroid 

_e12r2 In (re)i 4 i”2 I _ zz2 = 0, 

2 
(4.1) 

We have, as before, that the aspect ratio i = b/u. The 
solution of equation (2.12) satisfying condition (4.1) is 

Y= 
-R 

2(eA2 + 2) ! e)2r21n(ne)L4A’2r+2 2 

’ 
z 

2 
(4.2) 

Figure 4 is a dimensionless plot of the Stokes stream 
function in the form lO(lre)‘,’ (eil” + 2) Y/R as a 
function of the coordinates (2’ 2r, A-’ ‘z). Equation 
(4.2) implies that the maximum value of Y, Y,,,, 
occurs at (r, z) = (2C’ * ew3 4 i-’ *, 0), and that 

(4.3) 

It follows from the properties of Iogar~thmic ovals 
established in the Appendix that as Y increases from 0 
to Y,,, the aspect ratio of the streamlines increases 
from 1 to L(e/2)’ ‘; and that their shape changes 
systematically from that of a primary logarithmic oval 
to that of an ellipse. 

5. SIMPLE EXACT SOLUTIONS FOR OTHER 
CONFIGURATIONS 

Various other simple exact solutions exist for axi- 
symmetric free convection at small Rayleigh number. 
These are for configurations of the porous solid in 
which the radial cross-section is bounded by a logar- 
ithmic variant of a conic section, with r: in the 
equation of the conic section replaced by r: !n(r,/a) 

and adjustments of sign where required. In this way 
one may, for example, secure solutions in which the 
bounding surfaces and stream surfaces are ‘logarith- 
mic’ paraboloids and hyperboloids of revolution. In 
general these are of limited physical interest. They 
involve infinite flow regions, and the large Reynolds 
numbers in the far flow field prejudice the applicability 
of the present small Rayleigh number analysis. 

These objections do not hold, however, for toroidal 
cavities. The primary logarithmic toroid considered in 
Section 4 had internal radius r*O = 0. Solutions are 
available also for cases where r*O # 0 and the cross- 
section is a secotnfary logarithmic oval (see Appendix). 
In view ofresult (AlO), the solution approaches that for 
the 2-dim. elliptical cavity (Section 4 of ref. [l]) in the 
limit of large r,,/a. This is physically obvious, since as 
r,& + -L any finite sector of the toroid becomes 
indistin~ishable from a long cylinder of elliptical 
cross-section with a linear temperature gradient across 
it. 

6. VARIATION OF R-’ ‘I’,“,,, WITH CAVITY SHAPE 

The quantity R-’ Y n,nx is a measure of the relative 
strength of free convection at small R in a particular 
axisymmetric porous cavity. It is of interest to examine 
the dependence of R-’ Y’,,, on cavity shape and on 
the aspect ratio i,. In Fig. 5 we compare the variation of 
R-’ Y ma\ with J. for cylindrical and toroidal cavities, 
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FIG. 3. Free convection at small Rayleigh number in cylindrical cavities. Dimensionless plot of the Stokes 
stream function for aspect ratio I = (a) 0.25, (b) 0.5, (c) I, (d) 2, and (e) 4. Numerals on the curves are values of 

i04 Y/R. 

0 0.2 04 06 0.8 l,O 12 

FIG. 4. Free convection at small Rayleigh number in toroidal cavities. Plot of the Stokes stream function in 
the dimensionless form lO(ne)’ ’ (eE.’ + 2) Y/R. The coordinates are R’ ‘r, i.X’,‘z. Note that the plot is 

invariant with respect to the aspect ratio A. 
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FIG. 5. Free convectj~n at small Raybigh number in ax~symmetric and 2-dim. cavities of various shapes. 
Dependence of the strength of convection on the aspect ratio I.. The variation of Y ,JR for cylindrical and 
toroidal cavities shown as full curves. Asymptotic behaviour for cylindrical cavities is also shown. The 

variation of sD,,JR for rectangular and elliptical cavities shown as broken curves. 

We show on this figure afso the variation of R- ’ Cp,,, 
with ,I for 2-dim. free convection in rectangular and 
elliptical porous cavities [i]. QD,,, is the maximum 
value of the dimensionless stream function” Note that 
in view of the orientation-invariance theorem for 2- 
dim. convection Cl], @,,,,,(A- ‘) = @,,,(I). In cylindri- 
cal cavities variation with I of the position of Y,,, i.e. 
of the centre of the toroidal convective roll, is also of 
interest (Fig. 6). 

6.1. ~yli~~c~~ cavities: ~~~~~ of R-l Y_ 08 R 
Note the asymptotes R - ’ Y,,, = A/S as i -+ 0, and 

R-r Y,,, = (4el)-’ as i -+ X. (Fig. 5). 

We denote by (I, z) = (r,, 0) the position of Y,,, 
(Fig. 6). The quantity 1’ ‘r, expresses the position as a 
fraction of cavity radius. Although our calculations 
give only approximate values of I’%,, they indicate 
that this quantity remains close to its value as 2 -+ X, 
0.6065, for ,I as small as 1. It decreases to about 0.56 as 
i decreases to 0.25. 

@54i ’ I 1 I ! I 

0.2 0.3 05 1 23 5 10 

A 

Ftc. 6. Free convection at small Rayieigh number in cylindri- 
cal cavities. Dependence on aspect ratio i; of the position of 
the~nt~oftbeconvectjv~ro~~. Thisisat (7, zf = jr,,O), where 
Y = Y_,,. Note that ,41p z1 expresses the position as a 

fraction of cavity radius. 

6.3. T~~ida~ &~vi~~~: decade of R-r ‘u,, on i; 
It follows from equation (4.2) that Y=,, occurs at 

fr, zf = @z-“~’ eV3” A-‘“, O), and that 

Ri 
Y 

max S w (ei’ + 2)’ 
(6.1) 

It is simply shown that yimB, for toroidal cavities has its 
maximum value (&re”)-‘” z 0.07338 when i. = 
(2/e)’ :2 x 0.8578 (Fig 5). 

It is of interest to compare the rest&s brought 
together in Fig. 5. All four curves are essentiaIly 
similar. The curve for toroidal cavities has its maxi- 
mum at, and is symmetrical about, E, = (2/e)t”. The 
curve for cylindrical cavities appears also to have its 
maximum at, and to exhibit symmetry about, A = 
(2/e)’ ‘2. The maximum value for cylinders is about 
0.065, rather less than for toroids. Analogous re- 
lationships hold for Z&dim. cavities: for both elliptical 
and rectangular cavities R-l (o,,, is symmetrical 
about E. = 1 and has its maximum there. The 
maximum for rectangles, 0.0737, is somewhat fess than 
that for effipses, 0.0796. 

7. RELATIVE MAGNITUDE OF CONVECTION AND 
CONDUCTION. CRITICAL R 

We now examine the relative magnitude of con- 
vective and conductive heat transport in axisymmetric 
systems. This provides estimates of the critical Ray- 
leigh number for applicability of the present analysis 
(cf. El]). We take as the measure of convective trans- 
port the quantity N, the total convection of heat within 
the cavity across its mid-plane r* < a, z.+ = 0. Then, for 
both toroidal and cylindrical cavities, we have 

H = 2xc (r*, 01 T&,1 dr,. f7.i) 



I%;. 7. Free convection at small Rayleigh number in axisym- 
metric and 2&n. cavities of various shapes. Dependence on 
the aspect ratio i. of the critical value of R for applicability of 
the small Rayleigh number analysis. Relatian for toroidal 
cavities and asymptotic behaviour for cylindrical cavities 
shown as full curves. Relations far rectangular and elliptical 

eavities shown as broken CUWW, 

with a convenient value taken for the arbitrary in- 
tegration constant. Puttmg equation (7.2) into equa- 
tion (7.1) and using the third of~q~lations (X8), we find 
that 

WE -Q,LI’~ 
’ ill p.p 

;F (r, 0) ln[r/A- i ‘“u)] dr. 

(7.3) 

7.2 Toro~~u~ cuairies: critical R 
tising equation (4.2) in equation (7.3) and perfor- 

ming the integration, we find that 

Ear toroidal cavities we take as the measure of 
conductive transport the quantity K, the total radial 
heat conduction within the cavity across the cylinder 
r* = e- 1 *a Evidently 

K = Qb = 2fne)- 1 ‘4 jL1.2 &A i,z_ f7.51 

We introduce the ratio 6 = W/K as the measure of 
the relative importance of convective and conductive 
heat transport in Ihe system. It then foltows from 
equations (7.4) and (7.5) that 

Applicability of the present analysis requires that 
convective heat transfer be small compared with 
conductive heat transfer, i.e., say, that p < 0.1. We thus 
obtain the criterion 

The critical value of R, R,, has its rni~~n~um value 

l6 ‘% _ _-- 
C > 15 2e= 

X-4 z 0.9532 

when ji = (Z/L%)” ’ o 0.4952. As I. -+ .z%;, R, behaves 
like # (ne)” 4 i,3,2 3 0.6838 L3”; and as I -+ 0, ,R1 
behaves like 

472 ,4 --_- 4” 

se” 24 *-I ’ % 0.5031 d-’ ’ (Fig. 7). 

7.3. ~~~lin~r~cul cat:ities: criricuf R 
For cyfindrical cavities equation (7.3) reduces to 

I%= - Q/t’-2 j; Ii F fr. Of tn fj;%)dr. (7%) 

General expressions for H may be found by nsing 
equations (3.18) or (3.33) in equation (7.8) and perfor- 
ming the integration. The results are complicated and 
we limit ourselves here to examining If in the limits of 
smal1 and large 2,. 

When A is small, convective heat transport is con- 
centrated in the axiat boundary layer (Sectiun 3.2). 
Wirhin this boundary layer 

Accordingly, limiting the integration to the axial 
boundary layer, we find 

For cy~~~dr~ca~ cavities we define EC as the tataf 
radial heat conduction in the cavity, so that 

K = Qb = A’ 2 QA’ 2. (7.11) 

Itfollowsfromequations (7.lO)and (7.51) that,for iv 
small, 

This yields the folfowing criterion on R for cy~i~dr~ca~ 
cavities 

an the other hand, when L is large (Section X4), 

Y(r, 0) =: - $r’ln(J’ ‘r). (1,14) 

Putting equation (7.14) in equation (7.8) and integrat- 
ing, we find 
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Combining this with equation (7.11) gives 

p Z !$3’2, (7.16) 

parallel core flow with boundary layers of thickness 
0(1-l ‘) on the two horizontal bounding walls. 

We thus obtain the criterion on R for cylindrical 
cavities: 

8.3. Toroidal and elliptical cavities: ,frow patterns in- 
variant with i, 

ilarge, R <R, 3;i.32. (7.17) 

The solutions for toroidal (Section 4) and elliptical 
[I] cavities are in marked contrast to the foregoing. 
The toroidal solution, equation (4.2), may readily be 
rewritten as 

The behaviour of R, in the limits of small 1, equation 
(7.13), and large I, equation (7.17), is shown in Fig. 7. Y --.- = 

em,, 
7.4. L?iscussion 

In Fig. 7 we bring together results for cavities of 
various shapes on the variation with 1. of the critical 
value of R below which the small Rayleigh number 
analysis is applicable. As well as the present results for 
toroidal and cylindrical cavities, we show also those 
found [I] for elliptical and rectangular cavities. 

+ 2(1-‘,2_,)2 
1 

. (8.1) 

The behaviour for toroids and cylinders is generally 
similar. For both cavity shapes R, x A3 * as I + Z, ; in 
each case R, passes through a minimum value of about 
1 (at i z 0.5 for toroids and at I 2 0.12 for cylinders): 
and it then increases comparatively slowly as 1 de- 
creases to 0: as i&- ‘,’ for toroids and as i.- i:2 
(-In L)-’ for cylinders. In both cases R, = O(1) in 0.1 
<i<l. 

Plotted against the coordinates (i.’ ,‘r, i- 1’2z), the flow 
pattern is invariant with respect to variation of ,I (Fig. 
4). Evidently no pattern of core flow and boundary 
layers can emerge here in the limits i -+ 0 or X. 

Similarly the elliptical solution (equation (4.2) of ref. 
[l]) yields a plot of the flow pattern which is invariant 
with respect to variation of A. In that case also no 
pattern of core how and boundary layers can emerge. 

8.4. The geometrical origin qf cores artd boundary 
layers at small R 

These results are broadly similar to, and consistent 
with, those for 2-dim. cavities [I]. For both elliptical 
and rectangular cavities, however, the increase as 1 --t 
x is as AZ, and there is a slow decrease to a constant 
asymptotic value as A ---t 0. 

The existence of cores and boundary layers in the 
cases treated in Sections 8.1 and 8.2, and their absence 
from those of Section 8.3, indicates their geometrical 
origin. Cores and boundary layers emerging in axisym- 
metric and 2-dim. free convection at small Rayleigh 
number are essentially artifacts of cavity geometry: 
they are not inherent in the physics. 

8. CORE FLOWS AND BOUNDARY LAYERS fN 
,4XiSYMMETRiC 

AND HO-DlMENSiO~AL CAVITIES 

8.1. Cy~indr~cul cavities 
We have seen in Section 3 that in the limit both as 

i. + 0 and as ;I -+ X, the small R convective flow 
pattern in cylindrical cavities tends towards a core flow 
with two boundary layers. For i -+ 0, the core flow is a 
horizontal parallel flow, with one boundary layer on 
the axis and a second on the external cylindrical 
boundary (Fig. 1). For both boundary layers S = 
O(i’ z). (The analysis leading to equation (7.9) gives 6 
z (2/7~)i’.‘~ for the axial layer.) For L -+ Z, the core 

flow is a vertical parallel flow, with boundary layers of 
thickness 0(X’ ‘) on the top and bottom bounding 
planes (Fig. 2). 

The various solutions developed here and in ref. [I] 
are consistent with the following interpretation for 
cavities of shapes other than toroidal or elliptical. 
Consider a sequence of cavities, all of the same basic 
shape, but with the aspect ratio d free to vary. Then, for 
axisymmetric systems with 1, about unity, the flow field 
is essentially that for the toroidal cavity, equation (4.2), 
the effect of the particular cavity geometry being 
limited to adjustments near the boundaries. On the 
other hand, the influence of the boundary geometry 
becomes dominant both as d --* 0 and as i -+ X, and a 
core/boundary layer flow emerges. For 2-dim. cavities 
the interpretation is similar, except that in this case the 
flow with 1 about unity is basically that for the 
elliptical cavity (equation (4.2) of ref. El]). 

8.2. Rectangular cavities 
8.5. The special character of roroidal and elliptical 
cavities 

The solution for small R convection in rectangular The foregoing considerations indicate the special 
cavities [l] leads similarly to a core flow with two character of the toroidal and elliptical solutions. They 
boundary layers in the limits both as i -+ 0 and as 1 + represent, respectively, fundamental axisymmetric and 
‘x. An analysis similar to that of Sections 3.2 and 3.4 2-dim. flow patterns for convection at small R. They 
shows that as i. -+ 0 the solution tends towards a describe the basic axisymmetric toroidal convective 
horizontal parallel core flow with boundary layers of roll, and the basic 2-dim. elliptic convective roll; and 
thickness O(i:‘.“) on the two vertical bounding walls; they lead naturally to regular expansions in R, a matter 
and that as i + x the solution tends towards avertical to be pursued in a later paper. 
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APPENDIX 

THE LOGARITHMIC OVAL 

The curve 

- e r$ In r* - 22: = 0 (At) 

is a ~o~~~ir~~}ni~ or:ai with horizontal axis of unit length 
runningfrom(~*~ zlr ) = (0,O) to (1, 0). and with vertical axis of 
unit length runnmg from (e- ’ ‘, - $) to (e- ’ “, $). The aspect 
ratio, d, is equal to 1. It is readily shown by integration that 
the area of the oval, equation (Al ), 

A = a(re)“’ (A21 

More generally, the curve 

is a logarithmic oval with horizontal axis of length a and with 
vertical axis of length h. The aspect ratio, I, is equal to b/u. The 
area of the oval is then 

A = beI’ ’ ab 

4 

We refer to all ovals describable by an equation of the form 
(A3) as primary loyarithmic ovals. On the other hand, the set of 
curves parametrized by E2 

_ ej.2rZ ,n (ne)’ 4 R’**r 
2 

- 29 z 0, (A6) 

elZrZ In be)’ ’ 1’ *+ 2E, 
- ~-- 

2 
22’ = E’, D$E%(xelL’“. 

(A7) 

It is of some interest to examine the form of the secondary 
ovals in the limit as EZ -+ 2i/(rre)* “. Firstly we note that for 
E” = 2i/(ne)” the oval reduces to the single point (r. z) = 
(2x- 1,4 e-3*4 2-l ?, 0). We then write 

r = 2~~“~ e-3,4 k-t” + p, EZ = Z~/(~e)“* - s2.(A8) 

Expanding the first term on the LHS (A7) as a Taylor series in 
p about r = 2x-1,4 e-3,4 A-“2, we find 

- eA2rZIn@+4s”“2’ 22 _ ei2$ + .,_, (A9) -=- 
2 (xe)’ ’ 

It follows that, in the limit as E* + Zi./[(ne)’ “],equation (A7) 
reduces to 

eA2p2 + 2z2 = c2 (ALO) 

i.e. the logarithmic ovals reduce to ellipses with aspect ratio 
A(ei2)“’ centred on (2n-‘IJ e-3’4 ;(-“Z. 0). 

As’!?’ increases from 0 to 2i./(rre)‘!‘, the aspect ratio of the 
ovals increases from iv to i.(e/2)‘,2 and their shape changes 
systematically from that of a primary logarithmic oval to that 
of an ellipse. 

Curve 0 of Fig. 4 is a plot of the primary logarithmic oval, 
equation (A61 The curve labelled n (n = 1,2,. . . ,10) is a plot of 
the secondary logarithmic oval, equation (A7), for EZ = 
n&/5(rce)’ 12. 

LA CONVECTION LIBRE A SYMETRIE AXIALE AUX PETfTS NOMBRES 
DE RAYLEIGH DANS LES CAVITES POREUSES 

R&m&-On trouve de differentes solutions precises pour la convection a symttrie axiale aux petits nombres 
de Rayleigh (R) provoquie par un gradient de temperature stationnaire et radial qui est perpendiculaire au 
champ de gravitation. On pr&ente en d&ail des resultats pour des cavite!s cylindriques et toroidales a rapport 
arbitraire des axes (I). La valeur de R critique pour ~app~ication & I’analyse est de O@@) aux grandes 
vakeurs de I, de O(l) pour 41 < d $ 1, et aux petites valeurs de I ehe est de 0(I-t2) pour les tot&es et de 
O(n- * ‘“[ - ln A] - 1 ) pour les cylindres. Les solutions precises pour ies tordides donnent un aperw de la 
caracteristique de rouleau toroidal de la convection a symitrie axiale aux petites valeurs de R. 

Pour les cylindres (ainsi que pour la convection a deux dimensions aux petites valeurs de R dans le cas des 
rectangles) un ecoulement de coeur avec des couches limites se produit et quand I + 0 et quand I. -+ 3~. Le 
type d’ecoulement dans les toroydes (ainsi que dans les ellipses) est cependant invariant, sans ecoulement de 
coenr ni couches limites. 

De grandes analogies entre la convection a sym&rie axiale et celle a deux dimensions aux petitesvaleurs de 
R valent egalement pour les propridtis telles que la variation avec 1 de I’intensiti de la convection et de la 

valeur critique de R. 
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DIE ACHSENSYMMETRISCHE FREIE KONVEKTION BE1 KLEINER 
RAYLEIGH-ZAHL IN PORGSEN HOHLRAUMEN 

Zusam~nfassung-Verschiedene genaue Losungen werden fur achsensymmetrische Konvektion gefunden, 
die durch ein stationares, radiales, zum Gravitationsfeld senkrechtes Temperaturgefalle in porosen 
Hohlrlumen bei kleiner Rayleigh-Zahl (R) hervorgerufen ist. Ausfuhrliche Ergebnisse werden fur 
zylindrische sowie ringformige Hohlraume mit beliebigem Achsenverhaltnis (i,) angegeben. Der fur die 
Anwendung der Anaiyse kritische R-Wert ist 0(;L3”) bei grossen I-Werten, O(1) bei 0,l $ i < 1 und bei 
kleinen i-Werten O(r. ‘- I,‘) fiir Toroide und O(A-’ ‘[ - tn 11-r fiir Zylinder. Die genauen Ltisungen fiir 
Toroide geben Einsicht in die ringwulstige Charakteristik der achsensymmetrischen Konvektion bei kleinen 
R-Werten. 

Fur Zylinder (sowie fur zweidimensionale Konvektion bei kleinen R-Werten in Rechtecken) findet eine 
KernstrGmune mit Grenzschichten sowohl wenn i, --t 0 als such wenn i, -+ Y, statt. Bei Toroiden (sowie bei 
Eflipsen) ist das Str~mungsbiid jedoch gleichblei~nd, ohne Kerne noch Grenzschichten. 

Gute Analogien zwischen achsensymmetrischer und zweidimensionaler Konvektion bei kleinen R-Werten 
gelten such fur solche Eigenschaften wie die Anderung mit I der Konvektionsstlrke sowie des kritischen R- 

Wertes. 

CBO6OAHAcI AKCMARbHO-CMMMETPMtIHAfi KOHBEKHMFl IIPM HEBOJIbIiIMX 
3HAYEHMRX ‘IMCJIA PEJIEII BHYTPM IIOPMCTbIX IIOJIOCTEfi 

AHHOTSUIO- Pa3JIWiHbIe TOYHbIe peU!eHItR IIOnyYaeTca .UJlff aKCkiaJ!bHO-CHMMeTpWIHO~ KOHEeKUlllf 

BH~T~A ~OpUCTbIX ~0nocTe~ 06yC~OBeHa ~CT~~Y~E~IM pa~uanbHblM TeM~epaTyp~biM rpa~~eHToM 

nepfIeZi~HKyJISpHblM K rpaBHTaWOHHOMy nOnlo. nOiIpO6Hbie pC?yJibTfSTbI IIpeJlCTaBJIRtoTCK ,Ws( US+ 

JW,HApWleCKAX R TOpON,a,IbHblX IlOJIOCTCfi C flpOH3BOnbHbIM COOTHOUIeHMeM llJlHHOfi OCIl K KOpOTKOfi 

(i). KpHTRYeCKOe WCJIO Penen nnfl nprrMeHeHMfl aHanH3a npa 6onbmrrx 3HaYeHHIlX i - 0(13"). npe 

0,l <<R $ k - O(I) u npe ne6oJibumx 3HaYeHHRX i. - 0(%-‘t2) mln~ TO~OWOB, a nffa UHJIHHR~OB- 

@~-"'[-in ,i-'). -,-OYHbie peUIeHWI LUIR TOpOWOB nO3~O~~~T nOHHMaTb OCOtkHHOCTb TOpON.LELRb- 

HOrOCBepTKa aKC~anbHO-C~MMeTp~YHO~ XOHBeKULIN IIp3i He6OJibUlHX YUCJlaR PeJIeZi. 

&JUl WiJIHHApO6 (Iz TBKxe AJIR nByXMepHOfi KOHBeKUHH npH He6OJlbUIMX 3HaYeHMRX YHCfla Penen 

BHyTpU IIpRMOyrOJlbHfiKOB) WlpOBHbIfi IIOTOK C flOrpaHWYHbIMB CJlORM!-i CylUeCTByeT, KOrLLa i-+0 H 

KOrLlai+ X.OAHaKO,XapaKTep IlOPOKa B TOpOkSAaX(ki TBK)KC B 3nnwnCaX)--H6apMaHTHa, 6e3 fljlep 
H norpaH~YHbIx cJIoes. 

&Iri3Kife aHaJlOfMM MWWy aKC~a~bHO-C~MMeTp~YHO~ M i7ByXMepHO~ KOHBeKIi3iM npH He6OJIbUlHX 

YNCJIaX PeJIeR Cy"JeCTByIOT TaKwte LUUl TaKMX OCO6eHHOCTeti KPK H3MeHeHHC C ChlM KOHBeKUHM H 

KpNTHYeCKOrO 3HaYeHHll wicna Penen. 


